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ABSTRACT

It is often necessary to estimate
the population distribution of a random
variate from a sample of observed
values. Standard parametric families
may not provide satisfactory fit to the
data. A polynomial family is con-
structed by assuming that the distribu-
tion function G is a constrained poly-
nomial of the cumulative distribution F
of a convenient parametric family.
Polynomial families offer great flexi-
bility in data fitting, while retaining
the important feature of parametric
families that information in the data is
condensed into a moderate number of
values.

-iii-



THIS PAGE INTENTIONALLY LEFT BLANK



EXECUTIVE SUMMARY

The Armed Services Vocational Aptitude Battery consists of
multiple-choice tests. New kinds of computerized tests are being
developed and evaluated. Distributions of scores on these new tests can
be very different from those of scores on multiple-choice tests. The
same is true of the computerized adaptive version of the ASVAB.
Distributions observed in raw data contain sample error. Smoothing of
these distributions is useful in reducing the errors in statistical
analyses, and also in displaying the distributions.

The actual score distribution may not belong to any of the familiar
families of distributions. In such a case, one can begin with a
suitable family and then generalize it. In the generalized family, the
cumulative distribution function G is a polynomial of F, the
distribution function of the original family. This approach can
generate distributions with a wide variety of shapes. This research
contribution presents some theory of such general families of
distributions.
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INTRODUCTION

It is often necessary to estimate the distribution of a random
variate X from a sample of observations. Standard parameteric families
may not provide satisfactory fit to the data. For example, the
distribution may be multimodal. We can use nonparametric density
estimation, but then we lose the convenience of summarizing the
information in the data in a moderate number of values. It would be
useful to achieve a compromise between standard parametric families and
nonparametric methods. This can be done by defining a family in which
the number of parameters can be increased indefinitely until
satisfactory fit to the data is obtained.

POLYNOMIAL FAMILIES

Let F(x, £) be any parametric cumulative distribution function.
(The underscore in 6̂  indicates that it is a vector.) Let G(x, e_, a)
be a polynomial of F with the form

G = F akgk(F) (1)

where function g^ is a polynomial of degree k + 1 and contains the
factor F(1 - F). The coefficients a are such that G is monotone
nondecreasing in (0,1). The factor F(1 - F) ensures that G - 0 when
F = 0, and G = 1 when F - 1. Thus G, too, is a cumulative
distribution function and hence can be used for fitting observed data.
The functions can be of the simple form

gk(F) = F(1 - F) Fk-1 (2)

but then the polynomial in equation 1 contains successive terms that are
strongly correlated, which can lead to ill-conditioned matrices and
numerical instabilities while estimating the coefficients. Better
expressions for these functions are given in appendix A. The
distribution F, which is a special case of G, will be referred to as
the "base" distribution. The expressions are a compromise between
simplicity and spreading out the zeroes of the polynomials. If ninth
degree polynomials fail to yield a good fit, one should probably try a
different base distribution or try transforming the data.

In principle, the base distribution can have any form with any
number of parameters. In practice, its choice depends on ease of
computing F and its derivatives and on its suitability for the data in
hand. The normal distribution is a natural choice if x can take any
real value. If x can take only positive values, the Weibull is more
convenient than the gamma distribution. The beta distribution is a
natural (although not convenient) choice if x has a known finite
range. The variable X can be discrete as well as continuous. Then,
depending on the nature of X, the distribution may be binomial,
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hypergeometric, Poisson, and so on. Appendix B provides formulas for
fitting distributions of scores on multiple-choice tests, using the
negative hypergeometric as the base distribution.

In data fitting, the value of p may be set a priori or determined
in a stepwise fashion. In the latter case, we begin by fitting F.
Then, for each succesive value of p, we reestimate all parameters
(including those of F) and decide whether addition of the last term
provides a significant improvement in fit to the data.

Polynomial families are useful because they are extremely flexible.
Given the freedom in choosing the base distribution as well as the
degree of the polynomial, a wide variety of shapes can be obtained. In
the illustration presented later in this report, a Weibull base and only
two coefficients in the polynomial provide excellent fit to a bimodal
distribution.

MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood estimation (MLE) has optimal asymptotic
properties. In use with polynomial families, MLE can create a problem
in computation. In iterative fitting, coefficients a may be such that
the polynomial for G is not monotone at each observed value of x. As
a result, the density may be negative or zero; hence, its logarithm may
not exist at some values of x. The algorithm to calculate log likeli-
hood must check for this possibility, and the maximization routine must
contain steps to deal with the problem if it arises. Appendix A gives
equations for MLE by the Newton-Raphson procedure.

MINIMUM CHI-SQUARE ESTIMATION

Computations are substantially simpler if, instead of maximum
likelihood, we use minimum chi-square with the objective function
defined as follows. Let N be the sample size, m < N + 1 a positive
integer, x(n> i=1» 2, ..., N the order statistics, and

0 = X < x < x.... < < x = 1 . (3)

Let Nn = f(N + 1)X, ] + 1 where [y] is the largest integer less than
y, and nh = Nh - Nh_^. The X's must be such that each nh > 0. By
definition, X/Q\ and x/m\ are smallest and largest possible values
of x so that G(x/Q\, £, a) - 0 and G(x/m\, £, a) = 1 . The quantity
to be minimized is

m y
Q = z [(N + 1){G(x,M s , 6, a) - G(x, v 8, a)} - n ] /n . (4)

h=1 UV v h-r
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Although there is no rule for choosing x's, it seems desirable to space
them uniformly so that Q is equally sensitive to different parts of
the distribution.

If the parameters j) and a are known, the quantity in curly
brackets is a spacing of order nh, with expected value nh/(N + 1).
When the parameters are unknown, we can estimate them by minimizing Q.
Bofinger [1] has shown that, in the asymptotic limit, when N -* °=
while m and the X's remain fixed, Q has a chi-square distribu-
tion. Therefore, parameter estimation by minimizing Q will be called
the "minimum chi-square" method.

Unless we want to test goodness of fit between G and the data,
the distribution of Q with a finite sample does not matter. We may
even take m - N + 1 and use spacings of order one, if computational
cost is not a concern. Finite-sample properties of the estimator have
to be determined by Monte Carlo methods and are beyond the scope of this
paper. The important practical point is that Q can be computed even
if G is not monotone, and hence no special precautions are needed in
the calculations. If G is decreasing in some interval of F in
(0,1), that merely worsens fit to the data and increases the value of
Q. Experience has shown, however, that minimizing Q may yield small
negative slopes at end points. Therefore, it is necessary to determine
whether derivatives of the polynomial in equation 1 are nonnegative at
F = 0 and F = 1. If a derivative is negative, it is set equal to zero
by changing the coefficients.

Another benefit of using Q is the following. Q is a quadratic
function of the coefficients a. If parameters £ of F are held
fixed, minimization over coefficients is achieved by solving
simultaneous linear equations. This method is a major simplification of
the calculations. In addition, constraining the derivatives at F = 0
and F = 1 is much easier in linear equations than in nonlinear
fitting.

Apart from computational convenience, Q has another advantage
over MLE. It is well known that MLE lacks robustness because a single
extreme value can dominate the likelihood function and hence the
estimates of parameters. In contrast, Q uses not the observed values
themselves but their transforms to the probability metric. The
transformed value of an observation, no matter how extreme, lies between
0 and 1 and hence cannot dominate the objective function.

ILLUSTRATION

In the Infantry phase of the Marine Corps Job Performance Project,
1,976 Marines were administered a video firing game as a test of
eye-hand coordination. The score on this test (rescaled to obtain a
mean near 100) was fitted with a Weibull base and a cubic polynomial
(p = 2) by minimum chi-square. Despite the large sample, the minimized
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chi-square with 45 degrees of freedom was only 38.7. The parameters of
the Weibull were 1.58 and 101.24; the polynomial coefficients were 0.48
and -1.90. Figure 1 shows a histogram and the fitted distribution.
Clearly, an excellent fit has been obtained with only four parameters.

APPLICATIONS OF POLYNOMIAL FAMILIES

The primary use of polynomial families, as illustrated above, is to
obtain good fit to the sample distribution within the parametric
framework. A stepwise fit would be used in most applications. If
asymptotic properties of maximum likelihood estimates are to be invoked,
the degree of the polynomial needs to be specified in advance.

Polynomial families are also useful for testing goodness of fit.
Tests for normality are based on skewness and kurtosis. Corresponding
tests can be constructed as follows. If we begin with a normal base and
then add only the quadratic term g^, we obtain a skewed distribution.
If the added term is statistically significant, the null hypothesis of
normality is rejected in favor of a skewed distribution. Suppose we
know or assume that the true distribution is symmetric. Then we can add
only the symmetric cubic term g, (appendix A) and test whether kurtosis
is same as that of the normal. We can test skewness and kurtosis
simultaneously by adding g^ and §2 together.

These tests based on polynomial families have two major advantages
over conventional procedures. First, if the null hypothesis is
rejected, we can fit an alternative distribution that fits better than
the normal one does. Second, the procedure is completely general: it
can be used with any base distribution whatsoever (e.g., logistic or
Cauchy instead of normal). If the likelihood ratio or chi-square test
is used, the asymptotic distribution of the test statistic is the same
for all base distributions. (The finite-sample properties of the test
statistic will probably depend on the base distribution.)

Thus, polynomial families provide a flexible and hence powerful
approach to fitting and testing univariate distributions, discrete as
well as continuous.
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APPENDIX A

MATHEMATICAL DETAILS FOR CONTINUOUS VARIABLES

g FUNCTIONS AND THEIR DERIVATIVES

The distribution function in the polynomial family is

P
G(x, e, a) = F(x, e) + z akgk{F(x, e)} ,

where F is the base distribution function with parameter vector

To simplify computations as well as formulas, we define

h = 2F - 1 ,

H = F(1 - F) ,

T = (3 - 16H) .

Hence,

h' = 2 ,

H1 = -h ,

T = 16 h ,

where a prime denotes derivative with respect to F.
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The functions in the polynomial and their derivatives are

(A-lb)

(A-1c)

g-," ' = 0 ; (A-1d)

g2 = F H , (A-2a)

g2« = F(2 - 3F) , (A-2b)

g2" = 2 - 6F , (A-2c)

82'" = - 6 ; (A-2d)

83 = H2 , (A-3a)

83' = -2 h H , (A-3b)

g3" = 2 - 12H , (A-3c)

g3'tr = 12 h ; (A-3d)

A-2



3= 1 O
J

TO cr
\

TO II 
ii

i-3
 

O
i

TO
 

TO
U

l 
U

l + 3
-

TO U
l -

TO O
N

 
TO

— 
C7

1* 
OQ

•™
 

-»
 

O
"̂

n 
n 

ii
4=

 
ro

 
z?

TO
 

TO
 

TO
U

l 
U

l 
U

l

+

TO
TO

 
U

l
U

l .. -, 
-*

TO U
l - II H TO O
J -

+ -
t
"

00 TO 4^

TO U
l - II H TO O
J + O

J rv> ^ —
 x

TO 4^
"

TO U
) 

TO U
l

II 
II

>-3
 

H
TO

 
TO

O
J 

O
J

-r cn OQ 4=
- **

TO

- II J TO O
J

" + cr
.

TO O
J
-

TO

- II y TO O
J + j- TO O
J

TO 4=
r 

OQ

II 
II

cr
 

IT
OP

 
TO

O
J 

O
J

+ ro TO
O

J •*

TO O
J

TO O
J

3= I
a= Q

.

I o% o
I C
^ cr

3> I
3> U
1 D
.

U
l

O
U

l cr
-C

r
Q

.
-t O

I 4
^ cr



g7' = T g5' + 16 g6 , (A-7b)

g?" - T g5" «• 32 (gg- - g5) , (A-7e)

g7'" = T gg'" + 48 g6" - 96 g5' ; (A-7d)

gQ - h g? , (A-8a)

gg' = 2 g? + h g?' , (A-8b)

g8" = 4 g?' + h g?» , (A-8c)

gg'" = 6 g?" + h g7'" . (A-8d)

Apart from g^, forms of these functions are not unique or even

optimal in any sense. They do have a convenient feature: g^ 1 equals 1

at F = 0 and -1 at F = 1, and g2' equals -1 at F = 1. All other

derivatives vanish at the end points, which makes it easy to impose

monotonicity at the end points, where the constraint requires that

derivatives not be negative. The corresponding conditions on the

coefficients, for F - 0 and F = 1, are

1 + a1 > 0, i.e., a1 > -1 ,

and

1 - ( a i + a 2 ) ^ 0, i.e. , a.j + a2 <. 1

A-4



Let f(x) be the density dF/dx. The fitted density is

. P . .
dG/dx = f[l + I a,g, (F)] , (A-9)

k=1

where prime indicates a derivative with respect to F.

FUNCTIONS FOR SYMMETRIC DISTRIBUTIONS

Sometimes it is known (or assumed) that the underlying distribution

is symmetric. Let the expression for G be

G = F + I a , g , (F) (A-10)
"

where g. is of degree 2k + 1 . To ensure that G is a symmetric
K.

distribution for all values of the coefficients, the base distribution

must be symmetric and each function g in the polynomial must be an odd

function of (F - 1/2). Let M be the median of F.

gk(F(M)} = gk(1/2) = 0

for all k and hence

G ( M ) = F ( M ) + 0 = 1 / 2 .

A-5



Thus, the density dG/dx is an even function of (x - M), i.e.,

distribution G is symmetric about its median M.

A convenient choice of polynomials is as follows.

1 = 6H - 1

g., 1 1 - -6h ,

go = H g 1

- H (10 H - 2)

(A-12a)

(A-12b)

= 2h - 20 (A-12c)

= 4 - 20 (A-12d)

(A-13a)

= T g + 16 h g: (A-13b)

= T 32(h

A-6
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I t I 1 1 1 I t I
48 h g" + 96 g ; (A-13d)

(A-!4a)

,' + 16 h g0 (A-l4b)

= T §_" + 32(h g ' + g.) (A-l4c)

gj, = T g + 48 h §3 + 96 §3 . (A-14d)

Although written in a different form, functions g_, g», and g^

are the same as gh, g^, and go, respectively. The nonnegative slope

of the polynomial at F = 0 and F = 1 requires that

a1

MAXIMUM LIKELIHOOD ESTIMATION

Let f(x, Q_) be the density function of the base distribution and

S,(x, jjO its natural logarithm. The derivative of the fitted

distribution function G with respect to F is

G'(x, 6, a) = 1 + I akgk' {F(x, e)} . (A-15)
k

A-7



Unless otherwise stated, sums over k are from 1 to p and sums over i

are from 1 to n. Hence the log likelihood of a sample, containing

values Xj , i = 1, 2, ..., n is

LL = Z S,(xi, 6) + I logtG'Cx.p 8, a).] . (A-16)
i i

LL is the function to be maximized. The Newton-Raphson method requires

first and second derivatives of LL. Therefore, in estimation by

maximum likelihood, we need derivatives of g^ with respect to F up

to the third order, and derivatives of F and i. with respect to their

parameters up to the second order.

Let e, denote a parameter of F. For example, if F is a normal

distribution, 9 is the mean and 9? the standard deviation.

Subscripts r and s will be used with 9, and subscripts j, k, and

1 for coefficients and g functions in the polynomial. Subscript i

will indicate an observation. Arguments x^, Q_, and a will be
2suppressed. 3F/36 and 3 F/36 36 will be abbreviated as 3 Fft- r r s r

and 3 a F and the derivatives of «, will be treated similarly. Ther s
derivative

- (Z a k g ) 3F/36r

will be denoted by 3 Gj r

A-8



The first derivatives of log likelihood are

3LL/36 = L [3 2. + 3 G /G ] (A-17)
i

and

I 1
3LL/3a =. Z g /G . (A-18)

J J

The second derivatives are

3 LL/36 39 = Z [ 3 3 £ + ( 2 a. g, ) 3 3 F/Gr s . r s , k°k r s

- 3 rG' 3SG'/G' 2 + 3rF a/ (z ak§k" ' ) G ' ] , (A-19)
rC

3 L L / a a . 3a = - £ g.g^^/G 2 , (A-20)
J j_ J

and

' '3LL/36 3a = l [ c g - g Z a.g. ] a^F/c . (A-21)r J J ^

Maximizing likelihood using these equations yields simultaneous

estimates of 9 and the coefficients.

A-9



Derivatives for Normal Base

Parameters of the normal distribution are mean 6. and standard

deviation 6?. The standard normal variate is

z = (x - 8^/82

The cdf depends on x only through z:

F(x) =

where $ is the standard normal cdf. Partial derivatives of z with

respect to parameters are

-1/62 , (A-22a)

-z/82 , (A-22b)

= 0 , (A-22c)

2z/82 , (A-22d)

and

(A-22e)

A-10



Derivatives of $ with respect to z are

*'= 4" = exp(-z2/2)//2Ti ,

which is the standard normal density, and

= -z<(>

Using these derivatives of z and of $, those of F (x ) can be

computed as follows:

(A-23a)

= -z<t>/82 , (A-23b)

(A-23o)

1 2 2 2
z /6

and

(A-23d)

(A-23e)

A-11



The density of x is

f ( x , e) = < t > ( z ) / 6 2

and hence the log density is

, Q) = - z2/2 - log(69) - [log(27r)]/2

Therefore, its partial derivatives are

= -z 3 - z/9 (A-24a)

= -z

(A-24b)

= -1/62 , (A-24c)

= 2z a2z/e0 - z2/e2 + 1/e2

- -3z2/e2 + 1/e2 , (A-24d)

- z/e2

-2Z/92 . (A-24e)

A-12



Derivatives for Weibull Base

The Weibull cdf is

F (x, 8) = 1 - exp(-z) (A-25a)

where

91z = (x/92) . (A-25b)

Thus, 61 and 62 are shape and scale parameters. Derivatives of z

are

z log(x/82) , (A-26a)

(A-26b)

= log(x/8> 3.z , (A-26c)

32z/e2 , (ft_26d)

92Z Io6(x/e2^ ~z/82 (A-26e)

{log(x/62) +

A-13



Derivatives of F with respect to parameters are

= (1 - F) S Z , (A-27a)

- F) 30z , (A-27b)

- F) 3lZ [log(x/82) -a.,z] , (A-27c)

= -(1 - F) [(91 + 1)/82 -•- 32z] 32z , (A-2?d)

and

The density function is

V1f(x, e) = e1 (x/e2) exp(-z)/e2

and its log is

.(A-27e)

a(x, a) = logCe^ + (e1 - 1) log(x) - BI log(e2) - z ,

which has derivatives

A-14



l og (x /6 ) - 3 . Z , (A-28a)

(z - D/e2 , (A-28b)

1/92 - 3^2 , (A-28c)

(A-28d)

and

= -1/62 - a^z . (A-28e)

Estimation by Minimum Chi-Square

The quantity Q to be minimized, defined in equation 4 in the main

text, is

Q = z [(N + 1){G(x,N j , 9, a) - G(x(N )7 Q, a)} -
h h h-1

which simplifies to

Q = (N -e 1)2 E (G(x, ,, 6, a) - G(x, ,, 6, a)}2/nh - (N + 1)
h uh; v h-r

Sums over h are from 1 to m.

Denote F(x/N •., 9) by Fh and G(X( j, Q, a) by Gn. Then
h h

A-15



Q = (N + D I [(Fh - F h _ l } + z ak{gk(Fh) - g^)}]/^ - (N + 1) . (A-29)
ri K.

First, let us minimize Q over the coefficients a while the

parameters £ of F are fixed:

aq/aa. = 2 (N + 1) z [(Fh -

Setting these derivatives equal to zero yields simultaneous linear

equations of the form

£ C a = c , (A-30a)
k JK " J

where

P - _r (F - F } fe (F ) - s (F }} /n (A-30b)*- i ~ ^ V^u r i_ i / l&^^.ru/ B ^ V L , 1 J 5 I '',, V" ->uuy

and

To obtain derivatives of the coefficients with respect to e_, we

differentiate equation A-30b and rearrange terms to obtain
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Cjk 3rak = 3rcj - I 3rCjk ak

and

Z C . . 3 8 a . = 3 3 c . - £ 3 C . . 3 a ,. j k r s k r s j . s j k r k
- z a C . . 3 a. - z a 3 C . , a, . (A-31b). r j k s k . r s j k k \ -> /

K. K.

Derivatives needed in these equations are

3rCj = -J [ ( 3A- 3rFh-1}

+ (Fh - **-,> {3rF

= -J [ ( 9r9sFh - VsFh-1> { (gj (Fh ) - Sj(Fh-l)
+ ( 9 r F h - *r**-S {9sFh Sj (Fh} - 3sFh-1 gj

+ (3sFh - 8
8

Fh-1> {VFh gj(Fh} - 3rFh-1 ^
+ (Fh - Fh-1J {VsFh gj ( Fh ) + 3rFh 3sFh Sj

3sFh-1 «j (Fh-1 )}] /nh

3rCjk = [{3rFh

Vscjk
3rFh-1 3sFh-1

A-17
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I t I I
+ {3 Fu ĝ F,.) ~ 3 F, , g-(F, <)} {3 F, g, (F, ) - 9 F, , g,r h 6jv h r h-1 Bjv h-1 s h &kv h' s h-1 Bk
+ {3 F. g.(F, ) - 3 F, . g.(F, .)} {3 F, g, (F, } - 3 F, , g's h 6j hy s h-1 5jv h-1 r h &k hy r h-1 6k
+ (g-(F, )-g.(F, .)} {a a F, g, (F. ) + a F, 3 F, e, (F )°j h °j h-1 r s h °k h r h s h °k h-1

i i t
- a 3 F. , g. (F, .) - 8 F, . 3 F, , g. (F, Jll/n,r s h-1 °k h-1 r h-1 s h-1 °k h-1 h

At any given Q_, one computes the coefficients in the polynomial and then

the sum of squares Q. Thus, the coefficients and Q are functions of &_.

The derivatives of Q are given by

(1/2(N+1)2}arQ = £(V Gh-1)[(3rFh - 3rFh-1}

-3rFh-1 4(Fh-1)} + 3rak

D2] ar9sQ/ = i [(arGh - â )̂ osGh - â )

+ (Gh -Gh-1} (3r9sFh - 3r3sFh-1)]/nh

+ 3 F 3 F e ( F ) - 3 3 F e(F )r h s h Bk h r s h-1 &k h-1

- 9rFh-1 3sFh-1 «k' (Fh-1)} + I 3rak {3sFh k̂ (Fh>

- 3sFh-1 4(Fh-1)} + ,z 3r3sak {8k«FhJ - Sk(Fh-1)}

3sak{3rFh Sk(Fh} - 3rFh-^k(Fh-1)}]/nh •
(A-34b)

where ( r̂Gh - 3rGh_-|) is the quantity in square brackets in equation

A-34a, and (3sGh - 3sGh_-]) is defined similarly. These derivatives
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are used to estimate Q by minimizing Q with the Newton-Raphson

procedure.

Constraint at F = 0

The derivative of G with respect to F must be nonnegative at

F = 0. This requires that a.. > -1. If we obtain a^ < -1 after

solving the linear equations, the value obtained is replaced by -1. If

p = 1, (i.e., if no terms higher than the quadratic are present), we set

3 a 1 = 3 3 a 1 = 0 for all r and s and then proceed to calculater 1 r s 1 K

Q and its derivatives.

If p > 1, the polynomial is reexpressed in the form

p-1
G = F - g-(F) + I b e (F) , (A-35a)

k=1

where

ek(F) = g k + 1 (F) . (A-35b)

Equations for the coefficients b are of the form

I D ^ b , . = d 4 . (A-36a)

where
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Djk

and

d. = c J + 1 +C l | J + l . (A-360

The derivatives of D and d, and hence those of b, can be computed from

those of C and c. Then we have a., = -1, 3 a, = 9 3 a. = 0 and, for' p i r* s i
j>1 a * = b * 1. 3 a. = 3 b. .., and a 3 a. = 3 3 b. ,.J J J-l ' r j r j-V r s j r s j-1

For symmetric distributions, the constraint is a. < 1 .

Equations for imposing this constraint are similar to those above for

the general case, with a, = +1 and -g^ replaced by +g. in

equation A-35a, and a negative sign for C^ ,+^ in equation A-36c.

Because of symmetry, derivatives at F = 0 and F - 1 are equal and

hence the derivative at F = 1 need not be checked separately.

Constraint at F = 1

The derivative of G with respect to F at F = 1 must be

nonnegative, which requires a. + a« > 1. If this condition is

violated, we write
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p
1 2 2 1 k=3 k k

p-1
= F + g + z b e , (A-37a)

1 k=1

where

e1 = g2 - g1 , (A-37b)

e = g if k > 1 , (A-37c)
K. K"r I

and

(A-37d)

Equations for bk have the form in equation A-36a with

if j, k > 1 , (A-38a)

if k > 1 . (A-38b)

= C22 + C11 ~ 2C12 ' (A-38c)

dk= Ck +1 - C 1 lf k >

and
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- (C12 - Cn) . (A-38e)

After coefficients b and their derivatives have been computed, the

original coefficients are obtained as

a. = 1 - b, , (A-39a)

ak = bk-1 if k > 1 . (A-39b)

and similarly for their derivatives.

Constraints at F = 0 and F = 1

If a zero slope has to be imposed at both end points, we write

P-2
G = F - g, + 2gp + z b, e, , (A-40a)

k=1

where

(A-40b)

The coefficients are obtained by solving
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APPENDIX B

MATHEMATICAL DETAILS FOR DISTRIBUTION OF TEST SCORES

INTRODUCTION

Consider a test containing n items. The test score x is the

number of items answered correctly, so that 0 < x < n. A convenient

base distribution for test scores is the beta binomial distribution

generated as follows. Let T have a beta distribution with parameters

a and b1. Conditional on T = t, let the distribution of x be

binomial with mean nt. Then, integration over t shows that the

marginal probability of score x is

f(x) = [r(n + 1)/r(x + 1)r(n - x + 1)] [r(x + a)r(n - x + b1)/r(n + a + b1)
[r(a + b')/r(a)r(b')] (B_1}

This is a special case of the hypergeometric distribution, called the

negative hypergeometric.

Following Lord and Novick [B-1, section 23.6], it is convenient to

replace parameter b1 with

b = b1 + n - 1 .
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The parameters of the distribution can be calculated from the mean y

and standard deviation o as follows:

a = y(-1 + 1/a) (B-2a)

and

b = -a - 1 + n/a , (B-2b)

where

a = [n/(n - 1)] [1 - y(n - y)/na2] . (B-2c)

Estimates of a and b can be obtained by replacing u and o with

the sample mean and standard deviation.

CALCULATION OF PROBABILITIES

The score probabilities can be calculated by recursion. On

rewriting equation 23.6.4 in [B-1], the ratio of the probabilities of

successive scores is given by

f(x + 1)/f(x) = (n - x) (a + x)/(x + 1) (b - x), x < n - 1 . (B-3)
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Denote this ratio by w(x). Let u be some score in the middle of the

distribution, say the largest integer smaller than the mean. Let

v(u) = 1.

v(x + 1) = w(x)v(x) , u < x < n - 1 (B-4a)

and

v(x) = v(x + 1)/w(x) , 0 < x < u . (B-4b)

Then the score probabilities are given by

n
f(x) = v(x)/ 2 v(y) (B-5a)

y=o

and then the cumulative probabilities by

x
F(x) = z f(y) . (B-5b)

y=o

DERIVATIVES OF PROBABILITIES

The parameters of the distribution are 9- = a and Q^ = t>-

Therefore, using the same abbreviations for derivatives as in

appendix A,

3,w(x) = w(x)/(a + x) , (B-6a)
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3~w(x) = -w(x)/(b - x) , (B-6b)

= 0 , (B-6c)

3232w(x) = 2 w(x)/(b - x)2 , (B-6d)

and

3 3 w(x) = -w(x)/(a + x) (b - x) . (B-6e)

All derivatives of v(u) vanish. For u < x < n, we have

3 v(x + 1) = w(x) 3 v(x) + v(x) 3 w(x) (B-7a)

and

3 3 v(x + 1) = w(x) 3 3 v(x) + 3 w(x)3 v(x) + 3 w(x)3 v(x)
t o I o X o o f

+ v(x) 3 3 w(x) , (B-7b)
" o

where each subscript can be 1 or 2. By rearranging equations B-7a and B-7b,

corresponding equations useful at x < u are found to be

3rv(x) = [3rv(x + 1) - v(x)3rw(x)]/w(x) , (B-8a)

and
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a 3 v(x) = [ 3 3 v(x + 1) - 3 w(x)3 v(x)

- 3 w(x)3 v(x) - v(x)3 3 w(x)]/w(x) . (B-8b)
O i I / O

where derivatives of w(x) are obtained from equations B-6a to B-6e.

To obtain derivatives of score probabilities, define the sum

n
S = £ v(x) ,

x=0

and use equation B-5a to obtain

3rf(x) = [3rv(x) - f(x)arS]/S (B-9a)

and

[ar3gv(x) - f(x)(arass) - agf(x)(ars)
- arf(x)(3ss)]/s (B_9b)

ESTIMATION

The fitted cdf is

G(x, 8, a) = F(x) + Z a.g, [F(x, Q)] . (B-10)
k k k
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Hence the fitted score probabilities are given by

pr(0, B, a) = F(0, e) + z a.g,[F(0, 9)] (B-11a)
k k k

and, for x > 0,

pr(x, 8, a) = f(x, e) + z ak [gk(F(x, e)}

- gk{P(x - 1, e)}] (B-Hb)

These probabilities can be used for maximum likelihood estimation, but

minimum chi-square is more convenient while being asymptotically

equivalent to maximum likelihood.

For minimum chi-square estimation, create m < n + 1 cells or

score groups by choosing scores 0 < y1 < y?...< y = n so that the

observed frequency in each score group exceeds some value (say 10).

Let Fh = F(yh, e) and Gh = G(yh> 8, a), with yQ = -1 and FQ = GQ = 0

by definition, and Fm = Gm - 1. Let nh be the observed frequency in

cell h which contains scores x given by yn_i + ^ 1 x 1 yn» so that

z n, = N, the sample size. The quantity to be minimized is
h

Q = I [N (Gh - Ĝ ) - nh]2/nh . (B-12)
h
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Expressions for derivatives of Q are the same as in appendix A, except

that (N + 1) (which in appendix A is the total number of gaps) is

replaced by the sample size N.
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